MarketResearchReports.Biz

Energy Harvesting-Regeneration for Electric Vehicles Land, Water & Air 2014-2024

MarketResearchReports.Biz announces addition of new report “Energy Harvesting-Regeneration for Electric Vehicles Land, Water & Air 2014-2024” to its database

 

Albany, NY -- (SBWIRE) -- 01/21/2014 -- Energy Harvesting-Regeneration for Electric Vehicles Land, Water & Air 2014-2024

The electric vehicle industry - land, water and air - is rapidly rising to become a huge market of over $290 billion by 2024. Some run entirely on harvested energy as with solar lake boats. Others recycle energy as with regenerative braking of cars, buses and military vehicles harvesting kinetic energy. Others use different forms of harvesting either to charge the traction batteries or to drive autonomous devices as we progress to the wireless vehicle. In some cases, harvesting is making completely new forms of electric vehicle possible such as "glider" Autonomous Underwater Vehicles (AUVs) that stay at sea for years and surface to gain electricity from both wave power and sunshine whenever necessary. Indeed, multiple forms of energy harvesting on one vehicle is becoming much more common from cars to superyachts. This report is the first to provide technical and marketing analysis of the rapidly growing market for energy harvesting in electric vehicles - land, water and air - with forecasts.

Browse Complete report with TOC : http://www.marketresearchreports.biz/analysis-details/energy-harvesting-regeneration-for-electric-vehicles-land-water-and-air-2014-2024

This report gives a wealth of examples of energy harvesting in action on electric vehicles by land, water and air. It summarises trends in diagrams, tables and text to make it easy to compare essential information. Forecasts for adoption in 2014 and 2024 are backed by ten year forecasts for electric vehicle sales by type, 2014-2024 by category - number, unit value and market value. A critical explanation of all the technologies is given with the good and bad aspects and assessment of likely future progress. The work of a large number of suppliers and adopters is assessed.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. What is energy harvesting?
1.2. Choices of harvesting
1.3. Opportunities for energy harvesting in cars
1.4. Market size of EV energy harvesting 2013-2024
1.5. Largest sectors

2. INTRODUCTION
2.1. Energy harvesting
2.1.1. Textron Bell helicopter sensing
2.1.2. Train brakes
2.1.3. MEMS
2.2. Electric vehicle
2.3. Needs
2.3.1. Range and cost
2.3.2. Hybrid vs pure electric
2.3.3. Biomimetics
2.4. Options and examples
2.4.1. ETH, QinetiQ solar plane
2.4.2. Amerigon thermoelectrics for cars, etc
2.4.3. Military land vehicles
2.4.4. NASA on Mars- planetary exploration vehicles
2.5. Bluecar
2.6. Nissan Capacitor Hybrid truck, forklift
2.7. Toyota Prius
2.8. Multi-mode harvesting
2.8.1. Alongside
2.8.2. Smart skin
2.8.3. EH in tire pressure monitoring
2.8.4. Issues with TPMSs using batteries
2.8.5. Energy harvesters for TPMS
2.9. Microhybrids

3. TECHNOLOGY TRENDS
3.1. Photovoltaic
3.1.1. Flexible, conformal
3.1.2. Technological options
3.1.3. Principles of operation
3.1.4. Options for flexible PV
3.1.5. Many types of photovoltaics needed for harvesting
3.2. Limits of cSi and aSi technologies
3.3. Limits of CdTe
3.4. GaAs-Ge multilayers
3.5. DSSC
3.6. CIGS
3.7. Organic
3.8. Nanosilicon ink
3.9. Nantenna - diode PV
3.9.1. Nanowire solar cells
3.9.2. UV, visible, IR
3.10. Technology trends - electrodynamic
3.11. Vibration harvesting
3.12. Movement harvesting options
3.12.1. Piezoelectric - conventional, ZnO and polymer
3.12.2. Electrostatic
3.12.3. Magnetostrictive
3.12.4. Energy harvesting electronics
3.13. Electroactive polymers
3.14. Electrodynamic
3.14.1. Generation of electricity
3.14.2. Regenerative braking
3.14.3. Energy harvesting shock absorbers
3.14.4. Regenerative soaring
3.15. Thermoelectrics
3.15.1. Thermoelectric construction
3.15.2. Advantages of thermoelectrics
3.15.3. Automotive Thermoelectric Generation (ATEG)
3.15.4. Heat pumps
3.15.5. Thermoelectric Energy Harvesting in Japan
3.15.6. Ford, Volvo, Renault
3.16. Flywheels
3.17. Electromagnetic field harnessing
3.18. Microbial and other fuel cells
3.19. Other harvesting options

To Download Sample Report Visit @ http://www.marketresearchreports.biz/analysis-details/energy-harvesting-regeneration-for-electric-vehicles-land-water-and-air-2014-2024

4. EH FOR LAND VEHICLES
4.1. Solar Prius
4.2. Webasto pioneers see-through solar car
4.3. Pure EV motive power
4.4. EH shock absorbers in trucks, buses, cars
4.4.1. Levant Power
4.4.2. Wattshocks
4.5. Regenerative braking
4.6. Electricity from engine and exhaust heat
4.6.1. Copenhagen bicycle
4.6.2. Volvo hybrid bus
4.6.3. Fisker Karma car
4.6.4. Tesla car
4.7. Cruise car solar golf cars
4.8. Ford unveils solar powered car with new system that tracks the sun
4.9. Vibration harvesting ATV in India
4.10. Piezoelectric roads for California?
4.11. Award for railroad energy harvesting

5. EH FOR VEHICLES ON WATER
5.1.1. Example of US navy unmanned surface vehicles
5.1.2. Tamarack Lake foldable inland boat USA
5.1.3. Kitegen seagoing kite boats Italy and Sauter UK
5.1.4. Larger solar lake boats Switzerland
5.1.5. SCOD / Atlantic Motors high performance cabin cruiser USA
5.1.6. MW Line solar seagoing boat Switzerland
5.1.7. Unmanned boat gathering oil USA
5.1.8. Seagoing yachts France
5.1.9. Tag plug in hybrid large sail boat South Africa, New Zealand
5.1.10. Türanor PlanetSolar solar catamaran Germany
5.1.11. Energy harvesting superyacht UK

6. EH FOR UNDERWATER CRAFT
6.1. Swimmers vs gliders
6.2. Wave and sun powered sea gliders
6.2.1. Virginia Institute of Marine Science USA
6.2.2. Falmouth Scientific Inc USA
6.2.3. Liquid Robotics USA
6.3. Robot jellyfish USA and Germany
6.4. Wind + Solar for ships

Visit Report Analysis: http://www.marketresearchreports.biz/analysis/185208

7. EH FOR AIRCRAFT
7.1. Energy harvesting
7.1.1. Multiple forms of energy to be managed
7.1.2. AeroVironment / NASA USA
7.1.3. Boeing USA
7.1.4. École Polytechnique Fédérale de Lausanne Switzerland
7.1.5. ETH Zurich Switzerland
7.1.6. Green Pioneer China
7.1.7. Gossamer Penguin USA
7.1.8. Néphélios France
7.1.9. QinetiQ UK
7.1.10. Soaring China
7.1.11. Solair Germany
7.1.12. Solar Flight USA
7.1.13. Sunseeker USA
7.1.14. University of Applied Sciences Schwäbisch Gmünd Germany
7.1.15. US Air Force
7.1.16. Northrop Grumman USA
7.2. Beamed energy

8. EV CHARGING STATIONS WITH HARVESTING
8.1. Energy harvesting
8.1.1. Solar powered charging stations
8.1.2. Alpha Energy USA
8.1.3. Beautiful Earth USA
8.1.4. Envision Solar International USA
8.1.5. E-Move Denmark
8.1.6. EVFuture India
8.1.7. Sanyo Japan
8.1.8. Solar Bullet train
8.1.9. Solar Unity Company USA
8.1.10. SunPods USA
8.1.11. Toyota Japan
8.1.12. Innowattech Israel

9. MARKET FORECASTS 2013-2024
9.1. Largest sectors
9.2. Numbers of manufacturers

APPENDIX 1: IDTECHEX PUBLICATIONS AND CONSULTANCY

APPENDIX 2: WIRELESS CHARGING

Contact US:
Office: United States
State Tower
90 State Street, Suite 700
Albany, NY 12207
United States

Toll Free: 866-997-4948
Tel: +1-518-618-1030
E: sales@marketresearchreports.biz